Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 20923, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2151088

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Animals , Mice , SARS-CoV-2/genetics , Immunity, Humoral , Vaccines, DNA/genetics , COVID-19/prevention & control , Antibodies, Neutralizing
2.
Vaccines (Basel) ; 10(9)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006262

ABSTRACT

We conducted a nonrandomized, open-label phase I study to assess the safety and immunogenicity of an intradermal coronavirus disease 2019 (COVID-19) DNA vaccine (AG0302-COVID-19) administered using a pyro-drive jet injector at Osaka University Hospital between Yanagida November 2020 and December 2021. Twenty healthy volunteers, male or female, were enrolled in the low-dose (0.2 mg) or high-dose (0.4 mg) groups and administered AG0302-COVID19 twice at a 2-week interval. There were no adverse events that led to discontinuation of the study drug vaccination schedule. A serious adverse event (disc protrusion) was reported in one patient in the high-dose group, but the individual recovered, and the adverse event was not causally related to the study drug. In the analysis of the humoral immune response, the geometric mean titer (GMT) of serum anti-SARS-CoV-2 spike glycoprotein-specific antibody was low in both the low-dose and high-dose groups (246.2 (95% CI 176.2 to 344.1, 348.2 (95% CI 181.3 to 668.9)) at the 8 weeks after first vaccination. Regarding the analysis of the cellular immune, the number of IFN-γ-producing cells responsive to the SARS-CoV-2 spike glycoprotein increased with individual differences after the first dose and was sustained for several months. Overall, no notable safety issues were observed with the intradermal inoculations of AG0302-COVID19. Regarding immunogenicity, a cellular immune response was observed in some subjects after AG0302-COVID19 intradermal inoculation, but no significant antibody production was observed.

3.
Curr Res Transl Med ; 70(4): 103348, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1796171

ABSTRACT

To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and neutralization assays using pseudo-virus, and live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters from SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19 Vaccines , Antibodies, Neutralizing , Antibodies, Viral
4.
Journal of Chromosome and Gene Analysis ; 39(1):12-16, 2021.
Article in Japanese | Ichushi | ID: covidwho-1469250
6.
Hypertens Res ; 44(9): 1047-1053, 2021 09.
Article in English | MEDLINE | ID: covidwho-1260939

ABSTRACT

There is currently a respiratory disease outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After rapid development, RNA vaccines and adenoviral vector vaccines were approved within a year, which has demonstrated the strong impact of preventing infectious diseases using gene therapy technology. Furthermore, intensive immunological analysis has been performed to evaluate the efficiency and safety of these vaccines, potentially allowing for rapid progress in vaccine technology. After the coronavirus disease 2019 (COVID-19) era, the novel vaccine technology developed will expand to other vaccines. We have been developing vaccines for chronic diseases, such as hypertension, for >10 years. Regarding the development of vaccines against self-antigens (i.e., angiotensin II), the vaccine should efficiently induce a blocking antibody response against the self-antigen without activating cytotoxic T cells. Therefore, the epitope vaccine approach has been proposed to induce antibody production in response to a combination of a B cell epitope and exogenous T cell epitopes through major histocompatibility complex molecules. When these vaccines are established as therapeutic options for hypertension, their administration regimen, which might be a few times per year, will replace daily medication use. Thus, therapeutic vaccines for hypertension may be a novel option to control the progression of cerebrovascular diseases. Hopefully, the accumulation of immunological findings and vaccine technology advances due to COVID-19 will provide a novel concept for vaccines for chronic diseases.


Subject(s)
Autoantigens/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hypertension/therapy , SARS-CoV-2/immunology , Vaccines/therapeutic use , Chronic Disease , Humans
SELECTION OF CITATIONS
SEARCH DETAIL